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Abstract: The origin of the pair-delocalized ground state of spin S = 1/2, observed in the chemically symmetric, 
mixed-valence [Fe4S4]

3"1" cores in the high-potential iron protein (HiPIP) and its synthetic analogues, is analyzed in 
the framework of an effective Hamiltonian model, comprising terms for excess-electron transfer (leading to double-
exchange coupling of the paramagnetic Fe(II I) cores), vibronic coupling (trapping the excess electron), and Heisenberg-
Dirac-Van Vleck exchange. The adiabatic potential surfaces of the system d5-d5-d5-d6 are determined, and their 
extremal points, corresponding to definite electron distributions, are ascertained. The electron distributions depend 
essentially on the ratio of the transfer parameter and vibronic trapping energy, (3/(\2/2K). For small ratios, the excess 
electron is site-trapped; for ratios of larger magnitude (^ 1), the delocalization behavior depends on the nature of the 
electronic state considered. The transfer Hamiltonian has for 0 < 0 an orbitally nondegenerate ground state of high 
spin (S = 19/2), in which the excess electron is uniformly distributed over the four sites. However, for /3 > 0, the transfer 
interaction stabilizes a highly orbital- and spin-degenerate electronic ground state, including spin levels ranging from 
S= 1/2 to 17/2. The degeneracy is removed by vibronic interaction, leading to broken-symmetry, pair-delocalized 
states which appear in the energy order E(X/2) < £(3/2) < ... . Inhomogeneous HDVV exchange, arising from 
differences in the coupling parameters for ferrous-ferric (J) and ferric-ferric (J\) interactions, has little effect on the 
composition of the broken-symmetry states but has a great impact on state energy. The spin structures of the two lowest 
broken-symmetry states of the total Hamiltonian are similar to those inferred from spectroscopic studies of HiPIP and 
synthetic analogues thereof. 

Introduction 

The high-potential iron protein (HiPIP) from Chromatium 
vinosum belongs to a class of iron-sulfur proteins which contain 
one [ Fe4S4] core per molecule. X-ray studies of the protein show 
that the active center consists of four iron ions, each in a distorted 
tetrahedral environment of three bridging sulfur atoms and a 
fourth sulfur ligand from a terminal cysteine residue (Figure 1).' 
Cores of this type are also found in four-iron and eight-iron 
ferredoxins. The iron-sulfur proteins occur in three different 
redox states: [Fe4S4J+/[Fe4S4]2+/[Fe4S4]3+, where the first two 
oxidation levels are present in ferredoxins, while the latter two 
are found in HiPIP.2 The three oxidation levels correspond to 
mixed-valence states with the formal valencies 3Fe(II) + 
lFe(III)/2Fe(II) + 2Fe(III)/IFe(II) + 3Fe(III), respectively, 
the iron ions being in states of high spin. The electronic states 
can be represented as structures composed of four high-spin 
Fe(III) cores, accommodating one or several "excess" electrons. 

The oxidized HiPIP has been studied, just as the other systems, 
by a wide range of spectroscopic techniques, including Mossbauer, 
EPR, ENDOR, NMR, and MCD.3"14 These studies provide 
data relevant to the understanding of both the magnetic properties 

• Institut de Recherches sur la Catalyse, CNRS,69626 Villeurbannecedex, 
France. 

•Abstract published in Advance ACS Abstracts. March 15, 1994. 
(1) Carter, C. W.; Kraut, J.; Freer, S. T.; Alden, R. A.; Sieker, L. C ; 

Adman, E. T.; Jensen, L. H. Proc. Natl. Acad. Sci. U.S.A. 1972, 69, 3526-
3529. 

(2) Carter, C. W. In Iron-Sulfur Proteins; Lovenberg, W., Ed.; Academic 
Press: New York, 1977; Vol. 3, pp 157-204. 

(3) Antanaitis, B. C ; Moss, T. H. Biochim. Biophys. Acta 1975, 405, 
262-279. 

(4) Peisach, J.; Orme-Johnson, N. R.; Mims, W. B.; Orme-Johnson, W. 
H. J. Biol. Chem. 1977, 252, 5643-5650. 

(5) Evans, M. C. W.; Hall, D. 0. ; Johnson, C. E. Biochem. J. 1970, 119, 
289-291. 

(6) Dickson, D. P. E.; Johnson, C. E.; Cammack, R.; Evans, M. C. W.; 
Hall, D. 0.; Rao, K. K. Biochem. J. 1974, 139, 105-108. 

iff 
O S 

Figure 1. Schematic representation of the tetranuclear "cubane" [ Fe4S4] 
cluster in high-potential iron protein. 

and the distribution of the electronic charge in the iron-sulfur 
clusters. The EPR investigations furnish signals characteristic 
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for total spin 5=1/2, having anisotropic g values with an average 
gav = 2.05.3'4 Mossbauer spectroscopic studies reveal that the 
four iron sites occur in two internally equivalent pairs.5-7 The 
pair of iron centers designated by a contains the major part of 
the excess-electron charge, which is equally distributed over the 
two sites therein, leading to the formal oxidation states Fe(2-5 + <)+-
Fe(2.5 + .)+ and Fe'3 - <>+-Fe(

3 "^+ (0 < e < 0.25) for the a pair 
and the remaining pair, j8, respectively. Mossbauer spectroscopy 
also elucidates the spin structure of the electronic ground state.7 

Satisfactory fits of the spectra are obtained if it is assumed that 
the spins of both the a pair (SAB) and the 0 pair (SCD) a r e S°°d 
quantum numbers, which are coupled to resultant total S: 
|((SA,SB)SAB>(SC,SD)SCD)S>. For each allowed value of the 
mixed-valence pair spin, 5AB, two values of the ferric pair spin, 
SCD = ^AB ± 1 / 2 . a r e compatible with the value S = 1 /2 of the 
total spin. The effective A values of the ferric pair (/3) are found 
to be positive; i.e., of sign opposite that in mononuclear species, 
so its spin, SCD, must be aligned opposite to the total spin S. In 
other words, the spin of the mixed-valence pair (a) exceeds the 
spin of the mixed-valence pair (/3) by 1 /2: SCD = SAB _ * /2> This 
result also rationalizes thegvalues with an average slightly greater 
than 2 observed at the S = 1 /2 EPR resonance.7 The preference 
for the |(SAB,SAB - 1/2)1/2) state can be explained by adopting 
different values for the exchange-coupling constants in the 
Fe(IH)-Fe(HI) and Fe(II)-Fe(III) pairs of clusters.15 Empirical 
estimates of their values show that the ferric-ferric coupling J\ 
is about twice as strong as the ferric-ferrous coupling J: J\ = 
U = -350 cm-1,16 which leads to an energy separation between 
the levels ((9/2,4)1/2) and |(9/2,5)l/2> of about 440 cm"1. 

Concerning the value of the mixed-valence pair spin, SAB. in 
the ground state of the tetranuclear cluster in oxidized HiPIP, 
we remark the following. The spin of the corresponding pair in 
the ground state of related trinuclear [Fe3S4]

0 cores is equal to 
9/2, indicating that the local iron spins therein are aligned 
parallel.13 Whence, it is tempting to assume that the same subspin 
is also present in the mixed-valence pair of oxidized HiPIP, which 
would imply a ground state of the form |(9/2,4) 1 /2). We note, 
however, that even a careful analysis of the Mossbauer data for 
the effective A values of the [Fe4S4J

3+ core in HiPIP can hardly 
discern the latter state from the state |(7/2,3) 1 /2). Lower values 
of the subspin, SAB < 7/2, are, however, clearly incompatible 
with the magnetic hyperfine data. 

The synthesis of [Fe4S4(SR)4]
3"/2" model complexes by Holm 

and co-workers15'16 made the two lowest oxidation states of the 
tetranuclear iron-sulfur cores, [Fe4S4]

 +,2+, accessible to systematic 
analysis.19-21 Initially, similar studies of the highest oxidation 
state were precluded by the instability of the [Fe4S4(SR)4]" 
complex, until the use of sterically encumbered thiolates allowed 
for the stabilization and isolation of model complexes containing 
a core [Fe4S4P

+.22,23 These complexes display EPR and Moss
bauer spectra very similar to those observed in oxidized HiPIP.24 

The four iron sites in the model systems appear again in two 
different pairs, of which the sets of hyperfine parameters match 
very well those of the protein. The temperature dependence of 
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the magnetic susceptibility recorded in the same model was 
analyzed in the framework of an effective Hamiltonian description, 
including terms for Heisenberg-Dirac-Van Vleck (HDVV) 
exchange and double exchange in the delocalized pair.27 The 
energy level scheme deduced from these data has ground state 
1(9/2,4)1/2), with a nearly degenerate excited level, |(7/2,3)1/ 
2), lying at 11 cm-1. Single-crystal ENDOR measurements on 
[Fe4S4]

3"1" cores, created by y irradiation through electron depletion 
of [Fe4S4]

2+ units in an [Fe4S4(SCH2C6Ds)4] [N(C2D5)4] 2 lattice, 
give access to detailed information about spin distributions with 
respect to the crystal frame.25,26 The method distinguishes electron 
delocalization over two structurally inequivalent iron pairs present 
in the depleted cores. Accordingly, the spin-state structures have 
been interpreted to be |(9/2,4)l/2) and |(7/2,3)l/2>.26 

The similarity of the electron distributions observed in the 
oxidized HiPIP and in models with chemically equivalent iron 
sites provides evidence for the hypothesis that the pair delocal
ization in the ground state of this system is not primarily controlled 
by protein structure but is rather an intrinsic property of the 
iron-sulfur core. Similar pair delocalization phenomena are 
observed in triiron units of the form [Fe3S4]

0 in symmetric model 
complexes with chemically equivalent sites28,29 as well as in 
proteins.13 

It has been proposed that the electron delocalization properties 
of the iron-sulfur clusters are a consequence of the conjunction 
of two physical effects which are inherent to any mixed-valence 
cluster, viz., electron transfer and vibronic coupling.30,31 Electron-
transfer interactions are of great importance in clusters with 
equivalent sites, as they may lead to resonances between 
degenerate, localized valence states. The ensuing electron 
delocalization gives rise to double-exchange coupling of the local 
spins in clusters with paramagnetic ions. The concept of double-
exchange coupling was introduced by Zener for the explanation 
of the ferromagnetism in a number of mixed-valence semicon
ductors32 and was further developed by several groups in studies 
of mixed-valence clusters.33-44 The coupling mechanism results 
from the marked dependence of the resonance energy on the 
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relative orientation of the core spins at the interacting atoms: the 
transfer energy is maximum for a parallel alignment of the core 
spins, but it is reduced by spin-projection factors in the case of 
tilted spin arrangements.33 As a consequence, the double-
exchange coupling in dimeric units will stabilize an orbitally 
nortdegenerate ground state of maximum spin in which the excess-
electron charge is equally distributed over the two paramagnetic 
centers. On the contrary, the symmetric tri- and tetranuclear 
mixed-valent species may possess degenerate ground states, 
including states of different spin and orbital degeneracy, depending 
on the sign of the electron-transfer parameter, 18.35-39 

Vibronic interactions underlie the electron localization 
phenomena in symmetric mixed-valence systems.45*46 The excess 
electron is vibronically trapped at one site of the cluster by local 
ligand shell distortions if the set of electronic states is degenerate. 
Site trapping is thus a property common to all symmetric 
polynuclear systems displaying weak transfer interactions. For 
stronger transfer interactions, distortions from ideal symmetry 
and concomitant (partial) electron localization may arise either 
by vibronic interaction within an orbitally degenerate state (Jahn-
Teller effect) or by vibronic interactions between terms of different 
energy (pseudo-Jahn-Teller effect).31,47-52 The former localiza
tion phenomena persist in the limit of infinite 0 values, whereas 
the distortions approach zero in the latter case. Pseudo-Jahn-
Teller distortions are responsible for electron trapping in sym
metric mixed-valence dimers. Combinations of Jahn-Teller and 
pseudo-Jahn-Teller effects are found in symmetric tri- and 
tetranuclear clusters and are the origin of the nonhomogeneous 
charge distributions observed therein. 

The consideration of spin-dependent localization phenomena 
in d5-d5-d6 clusters, which follow from the conjunction of spin-
dependent electron transfer (double-exchange) and vibronic 
coupling, allowed us to give a consistent description of both the 
electron distributions and the spin-state structures observed in 
the [Fe3S4]

0 cores of reduced ferredoxin II and its synthetic 
analogues.50 The study presented in ref 51 revealed a similar 
tendency toward pair delocalization in the system d'-d'-d'-d2, 
and we now want to extend our approach to the oxidized state 
of HiPIP and synthetic models thereof. 

Description of the Model 

Construction of the Electronic Basis States. We consider a -
four-nuclear cluster of tetrahedral (Ti) symmetry with metal 
centers A, B, C, and D. The formal oxidation state of the cluster 
reads d5-d5-d5-d6. There are five localized 3d-type orbitals at 
each center: |a>, |ai,_,4>, |b>, |bi,_,4>, |c), |ci,.,4), |d>, and |di_,4). 
The indexed orbitals are singly occupied. The unindexed orbitals 
are singly occupied at the three ferric (d5) sites and doubly occupied 
at the ferrous (d6) site. The spins of the unpaired electrons at 
each center are coupled parallel in order to obey Hund's rule, 
leading to local spins Sx0 = 5/2 (ferric) and Sx = 2 (ferrous), 
with X = A, B, C, or D. The space of electronic cluster states 
considered here is spanned by antisymmetrized products of the 
single-site, high-spin functions. It is convenient to pass to a basis, 
consisting of eigenfunctions of proper total spin. As we are dealing 
with a four-spin problem, there exists a considerable freedom in 
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the choice of the spin-coupling scheme in the definition of these 
electronic basis states. In our numerical analysis of the electron 
delocalization problem, we adopt the basis 

K^AXC^B '^C )"^BC '1^D )^BCD W 

! (^ ' ( (^C '1^D )^CD '^A )̂ ACD )^) 

10SO(OSD '1^A ^ A D I^B ^ADB )S) 

\(SDX(SA ,SB )S'AB ,Sc ) S A B C )S) 

The notation (Sk°,SP)SkP stands for the standard spin vector 
coupling of the spins 5*° and Sp into resultant spin Si1P- The 
basis functions are characterized by the position of the ferrous 
site, the total spin S which can range from 1/2 to 19/2, and the 
values of the intermediate spins SkP and S*/m°. The spin quantum 
numbers are constrained by the usual triangular inequalities: 0 
< SkP < 5, \SkP - 5/2| < Sklnp < SkP + 5/2, and \Sk!m° - 2| < 
S < Sklmo + 2. 

Effective Hamiltonian. Electronic structure calculations of 
paramagnetic transition-metal clusters starting from the basic 
electrostatic two-particle interactions and kinetic energy operators 
face considerable problems of computational nature. Phenom-
enological approaches are, on the contrary, quite feasible and 
provide moreover a clear insight into the basic mechanisms 
underlying the essential features of these systems. 

In the present work, the basic interactions are represented by 
an effective Hamiltonian, Htu = H1 + #HDVV + H„ + H^, 
including terms for electron transfer, Heisenberg-Dirac-Van 
Vleck exchange, electron-vibrational interaction, and elastic 
energy of nuclear vibrations, respectively. The initial degeneracy 
of the electronic basis states (eq 1) is removed by the action of 
the operator Hta. 

The operator Ht is a one-electron operator which transfers 
electrons between the localized states of the cluster, thereby 
multiplying the resulting states by transfer parameters. Their 
values depend on the overlap properties of the orbitals implied 
in the transfer. Transfer processes involving electrons occupying 
the indexed orbitals result in states of considerably higher local 
energies than of those of the basis states given in eq 1 and will 
be hereupon ignored. Under this restriction, the transfer operator 
will act only on the electrons in the doubly occupied orbitals a, 
b, c, or d. Thus, H1 takes the form 

#,-/WoJVo (2) 
Kj 

where the transfer operators, ttj, are defined by the relations 

t,j\i) = l/> O) 

with i and./ indicating the orbitals. P0 is the projector on the spin 
space of Hund's rule regarding states. As we consider a system 
of perfect Tj symmetry, the transfer interactions in the equivalent 
orbital pairs, (a,b), (a,c),..., (c,d), are described by a single transfer 
parameter, /3. 

The calculation of the transfer matrices for the multielectronic 
states is simplified by adopting a set of basis states in which the 
excess electron is put in one of the fictitious orbitals a', b', c', or 
d'. The excess-electron spin, s, is then coupled to the core spin, 
Sx

0, of the reduced atom: (5x°,s)5x (coupled core-spin repre
sentation). In this way, the system is formally represented by an 
aggregate of four iron cores, each of spin 5° = 5 / 2, accommodating 
an itinerant electron in the primed orbitals. It has been shown50 

that the transfer matrix elements in the coupled core-spin 
representation are linked to those in the original representation 
(eq 1) by a factor of 6/5. Subsequently, the transfer matrices 
can be calculated by means of the procedure given in ref 50. The 
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Table 1. Energy Eigenvalues of the Tetrahedral d5-d5-d5-d6 

Double-Exchange Problem 
A B D 

spin 

19/2 
17/2 
15/2 
13/2 
11/2 
9/2 
7/2 
5/2 
3/2 
1/2 

en 

3(1) 
14/5(3) 
13/5(6) 
12/5(10) 
11/5(15) 

2(21) 
9/5 (24) 
8/5 (24) 
7/5(21) 
6/5(15) 

ergy/0 (degeneracy) 

-1(3) 
-4/5 (6) 
-3/5(10) 
-2/5(15) 
-1/5(21) 

0(24) 
1/5(24) 
2/5(21) 
3/5(15) 
4/5 (6) 

-6/5 (3) 
-6/5 (8) 
-6/5(15) 
-6/5 (24) 
-6/5 (35) 
-6/5 (40) 
-6/5 (39) 
-6/5 (32) 
-6/5(19) 

total no. 

4 
12 
2.4 
40 
60 
so 
SS 
S4 
6 S 

40 

eigenvalues of the transfer matrices dependent on the total spin 
are given in Table 1 (see also ref 53). 

The Heisenberg-Dirac-Van Vleck (HDVV) operator in Td 

symmetry, describing the intercenter exchange interactions, reads 

"HDVV = " L US1(S, + S1 + SJ + J1(SJ1 + SJn, + 

S1SJ)n, (4) 

where the summation is over the labels i,k,l,m = ABCD, DABC, 
CDAB, and BCDA. The HDVV Hamiltonian given in eq 4 
accounts for the different values of the exchange-coupling 
constants in ferrous-ferric (J) and ferric-ferric (J\) pathways. 
The occupation number operator nt (i = A,B,C,D) keeps track 
of the center containing the excess electron, i.e., n, = 1 if the 
electron is at site i and 0 otherwise. The HDVV operator given 
in eq 4 is diagonal in the localized representation defined by eq 
1. The diagonal elements are given by the expression 

E(S,S klm °) = £° - JS(S + 1 )/2 - (J1 - J)Sklm°(S klm 

D/2 (5) 
where E0 is a constant term common to all spin-state energies. 

The relaxation of the ligand shell upon addition of the excess 
electron in a localized state is accounted for by the electron-
vibrational interaction term 

"cv = 2><2,«, ' = A,B,C,D (6) 

where X is the vibronic coupling parameter independent of spin, 
coordinate (?, measures a symmetric local distortion around center 
i, and nt is its electronic occupation operator. We pass, for 
convenience, to symmetrized coordinates, which for a tetrahedral 
system read 

(7) 

Qa = (QA + QB + Qc + QD)/2 

& = (QA + Q B - Q C - Q D ) / 2 

<2, = ( Q A - Q B - Q C + QD)/2 

2 Z = ( Q A - Q B + Q C - Q D ) / 2 

and transform according to the representations ai (Qa) and t2 

(Qx, Qy, Qz) of the tetrahedral group. The origin in Q space 
corresponds to a structure of perfect Td symmetry, which is 
depicted by four shells of equal radii at the bottom left of Figure 
2. Points off the origin represent structures of symmetry lower 
than Td- The points on the cube in Figure 2 define some selected 
directions in which the distortions represent lower symmetries: 
three-fold symmetry (A, B,.., ABC,...) and two-fold symmetry 
(AB, AC, ...). The size of the distortion is, in each direction, 
proportional to the distance to the origin. Hev can be expressed 

(53) Borras-Almenar, J. J.; Coronado, E.; Georges, R.; Gomez-Garcia, C. 
J. Chem. Phys. 1992, 166, 139-144. 
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Figure 2. Space of symmetrized vibrational coordinates, Qx, Qy, and Q2. 
The labels, A AB,..., ABC,.... and ABCD mark directions with one, 
two, three, and four dilated ligand shells, leading toelectron derealization 
over monomeric, dimeric, trimeric, and tetrameric subunits of the cluster, 
respectively. 

in the symmetrized coordinates as 

Hev = \[QJ2 + Qx(nA + nB-nc- /iD)/2 + Qy(nA -

nB-nc + /iD)/2 + Qz(nA -nB + nc- nD)/2] 

= X[QJl+ nxQx + nyQy + n2Q2) (8) 

The interaction with vibration Qa is identical for all electronic 
states and can be ignored. 

Finally, the sum of the elastic energies of the symmetric local 
vibrations around the four metal centers, 

"ei = (* /2>I> 2 = W2)«2fl
2 + Qx

2 + Q2 + Q2) 

i = A,B,C,D (9) 

(Qa is taken to be zero hereafter), is added. The factor K in eq 
9 is the force constant of the iron-sulfur bond, which is assumed 
to be independent of oxidation state. 

The diagonalization of the interaction matrices of the total 
Hamiltonian //eff yields the electronic energies as a function of 
the coordinates Qx, Qy, and Q1. The adiabatic energy surfaces 
thus obtained for different spins can be numerically studied. The 
lowest minima of the adiabatic surfaces define, in semiclassical 
approximation, the spin, the stable nuclear configuration, and 
the electron distribution of the ground state. The numerical results 
for these properties will be analyzed in the next section. 

Results and Discussion 

Electron Distribution and Spin in the Ground State. The 
tetrahedral symmetry of the Hamiltonian //eff imposes the same 
symmetry on the adiabatic potential surfaces defined on the 
vibrational space. The adiabatic potential surfaces are inde
pendent of spin in the absence of transfer interaction 0 = 0) and 
of HDVV exchange (J = J\ = 0), so they are forming multi-
spin-degenerate sheets in those cases. The lowest sheet possesses 
four equivalent absolute minima along the trigonal directions in 
Q space, (-1,-1,-1), (-1,1,1), (1,1,-1), and (1,-1,1), pointing 
toward the vertices of the tetrahedron shown in Figure 2. In each 
of these directions, indicated in Figure 2 by A, B, C, and D, 



5366 J. Am. Chem. Soc, Vol. 116, No. 12, 1994 Bominaar et al. 

respectively, three of the coordination spheres are equally 
contracted and the remaining one is dilated. The excess electron 
in the minima is localized at the center in the dilated ligand shell. 
The vibronic energy gained by the site trapping of the electron 
is equal to \2/2K. There are furthermore two types of saddle 
points on the potential surfaces. Four equivalent saddle points 
are located along the directions (1,1,1), (-1 ,-1,1), (-1,1 ,-1), and 
(1,-1,-1), i.e., in the directions opposite those of the minima. 
Accordingly, the excess electron is delocalized over three dilated 
sites, which are indicated in Figure 2 by the labels BCD, ABD, 
ABC, and ACD, respectively. Another set of equivalent saddle 
points is situated along the directions (1,0,0), (-1,0,0), (0,1,0), 
(0,-1,0), and (0,0,1), and (0,0,-1). They are associated with 
excess-electron delocalization over the six dilated pairs CD, AB, 
BC, AD, BD1 and AC, respectively (Figure 2), and lie halfway 
between the two corresponding minima. The latter saddle points 
correspond to minima in the sections of the lowest potential well 
along the Q, axes and are located a distance of \/2K from the 
origin. A representative set of minima and saddle points can be 
discerned on the adiabatic surface defined on the diagonal planes 
of the cube in Q space, which is depicted in Figure 3A. The 
surfaces in the figure were constructed, for computational 
convenience, for a smaller system, d'-d'-d'-d2, which exhibits the 
same qualitative features as those of the genuine system, d5-d5-
d5-d«. 

It can be seen from Table 1 that the electronic ground state 
of the transfer operator H1 in the system d5-d5-d5-d6 essentially 
depends on the sign of the transfer parameter /3. For negative 
values of /3, there exists an orbitally nondegenerate ground state 
of maximum spin, 5 = 19/2, which is separated by an energy gap 
of /3/5 from the first excited state. The excess electron in this 
ground state is equally distributed over the four sites of the 
tetramer. Since the transfer interactions in the high-spin state 
are not weakened by spin-projection factors, as is the case for 
lower spin numbers, the high-spin state becomes the ground state. 
The same type of double-exchange-stabilized, high-spin ground 
states can be derived for # < 0 in the theory of mixed-valence 
dimers and trimers. For positive values of 0, the ground state of 
the electronic hamiltonian, Ht, is 215-fold degenerate, including 
states of spins ranging from 1 /2 to 17/2. Moreover, the ground 
manifolds of spin 5 are orbitally degenerate for each spin number 
1/2 < 5 < 17/2. 

The values of /3 as obtained by quantum chemical computations 
on iron-sulfur clusters are found to differ in sign and magni
tude.41'50 The contradictions about the sign of the effective 0 
values may owe to the preponderance of one or the other of the 
antagonistic contributions to /3 deriving from the various "through-
bond" and "through-space" pathways, depending on the com
putational method used. Experimental data on transfer parameter 
values in iron-sulfur clusters are as yet not available. In view 
of the lack of unanimity as to this number, we shall consider the 
full /3 range including negative and positive values. 

For small, negative values of/3 (|/3|/(\2/2/c)« 1), the positions 
of the minima in Q space are, obviously, close to those found for 
/S = O. The excess electron, although still mainly localized at one 
site, is then also slightly delocalized toward the other sites of the 
system. These transfer interactions, which depend on spin, remove 
the degeneracy of the spin-state energies and give rise to an 
effective ferromagnetic coupling of the local spins, leading to the 
energy order £(19/2) < £(17/2) < ... < £(1/2). The energy 
intervals between the spin-multiplet energies obey the Lande rule 
for sufficiently small values of /3. The same property can be 
derived for dimers30 and trimers.35 The positions of the energy 
minima in Q space are drastically changed by increasing /3 further 
in magnitude. The energy order of the spin states, however, which 
is imposed by the transfer interaction (see Table 1), remains 
unchanged. The energy of the orbitally nondegenerate electronic 
5 = 19/2 ground state is well separated from the other 5 = 19/2 

Figure 3. Adiabatic potential surfaces for the S = 1 /2 state of the model 
system d'-d'-d'-d2 in the plane Qy + Q1 = 0, depicting the minima and 
saddle points discussed in the text. Parameters used: /c = 1, X = 2,0 = 
1 (A), 3 (B), and 7 (C). The two equivalent minima in A are located 
in the directions with site localization indicated by C and D in Figure 2. 
The two minima in C have merged into a single minimum located in the 
direction CD for pair delocalization. 

levels for strong, negative transfer interaction, /3/(\2/2<e) < - 1 , 
so pseudo-Jahn-Teller distortions become negligible. Conse
quently, the minimum of the lowest adiabatic surface is located 
at the origin in Q space. The electron-transfer interaction in 
tetrameric units thus results in the stabilization of a completely 
delocalized ground state of maximum spin for negative /3 values 
of sufficient magnitude, just like in dimers30 and trimers.35,50 

For small, positive values of /3, we have again predominant 
excess-electron localization at one center for all spin states. These 
states are split in the same energy order as in the case of negative 
/3 values, due to slight spin-dependent electron delocalizations. 
Systems with positive /3 values behave, however, completely 
differently from those with negative /3 values in the domain of 
strong transfer interaction. The orbitally degenerate ground states 
of spin 5=1/2, . . . . 17/2, found for /8 > 0 (see Table 1), lead to 
Jahn-Teller distortions which persist in the limit /S/(X2/2/c) » 
1. For ratios greater than 1, the minima of the lowest adiabatic 
surface for the spin 5=1/2 are located at six equivalent positions 
on the Qi axes. These minima correspond to the second set of 
saddle points obtained before for /3 = 0 (see Figure 3). The 
corresponding structures have two-fold symmetry and contain 
two contracted and two dilated ligand spheres which are labeled 
by AB,... in Figure 2. The expanded spheres contain the major 
part of the excess-electron charge, which is equally distributed 
over the two centers inside them; the remaining electron charge 
is equally distributed over the two contracted sites. In other 
words, the electron distribution reflects the symmetry of the 
distorted structures at the minima. The order of the spin-state 
energies calculated for large, positive /3 values does not simply 
proceed, as for negative /3 values, for the energy spectrum of the 
transfer operator Ht, due to the degeneracy of the electronic ground 



Coupling in High-Potential Iron Protein Systems 

state (see Table 1). Numerical analysis reveals that the 
degeneracy of the ground-state energies is removed by the action 
of the vibronic interaction. The broken-symmetry S = 1/2 state 
becomes the ground state for 0/(X2/2/c) > 1.1. The energies of 
the spin ground levels appear as £(1/2) < £(3/2) < ... < £(17/ 
2) for 0/(X2/2<c) > 3, which is the opposite order of that obtained 
for small 0 values. Minima located at the Qt axes are also obtained 
for 5 = 3/2,5/2,7/2, and 9/2. For these and higher spin numbers, 
there may exist, however, depending on the value of/S, energetically 
close-lying local minima in different nonequivalent directions. 
The coordinates of the axial minima appear, for 0/(X2/2/c) > 3, 
in the order \/2K > Q,( 1 /2) > 6,(3/2) > ... > Qi(g/2). It follows 
that the excess electron in the minima is not strictly confined to 
the dilated pairs, but it has also a nonvanishing probability density, 
increasing with spin S, to be found at two contracted centers. We 
notice, however, that the vibronic energy splittings between the 
spin multiplet energies are rather small. By adopting a vibronic 
site trapping energy of X2/2/c = 2000 cm-1 and 0/(X2/fc) = 3, we 
find the energy splittings £(3/2)-£(l/2) and £(17/2)-£(l/2) 
to amount to 3 and 194 cm-1, respectively. 

The pair derealization and the spin quantum number, S = 
1/2, in the orbitally nondegenerate ground state of the Hamil-
tonian Hx + Hm agree with the empirical results for these properties 
in oxidized HiPIP and related model complexes. The spin-state 
structure of the broken-symmetry, "pair"-delocalized, 5 = 1 / 2 
ground state will be analyzed in the next section. 

Spin Structure of the Broken-Symmetry, 5=1/2 Ground State. 
The spectroscopic investigations of oxidized HiPIP and its 
synthetic analogues show that the spin quantum number of the 
ground state is S = 1/2 and provide also detailed information on 
the coupling pattern of the local spins (see Introduction). In the 
following, we examine the spin structures of the broken-symmetry 
states obtained by our model in the limit of strong transfer 
interaction, 0/(X2/2K) » 1. 

The analysis is facilitated by employing an electronic basis 
which is adapted to the two-fold symmetry of the distorted 
structures. The axis Qx is thereby taken as the priviliged direction. 
We introduce first a convenient basis for the electronic functions 
of the dinuclear fragments AB and CD of the tetramer. The 
functions for the pair containing the excess electron (e.g., AB) 
are defined as the eigenstates of the transfer operator in the dimer. 
These states formally correspond to the expressions50 

* A B = (1/V2)[|((5AV)5A^B°)5AB»'> T 

\(SA°,(s,SB°)SB)SXBV)] (10a) 

Then, by adopting a coupling scheme in which the composite core 
spin, SAB0, is coupled to the excess-electron spin s, eq 10a takes 
the form50 

* A B = t(2S° + SAB + 3/2)/(4S° + 

2)] 1 / 2 | ( (SA
0 ,SB

0)SAB° = SAB + 1/2,J)SAB;0±
AB> + 

[(2S°-SAB + l/2)/(4S° + I ) ] 1 Z 2 K ( S X
0 ^ 8 V A B 0 = 

S A B - 1 / 2 , 5 ) S A B ; 0 / B ) (10b) 

The excess electron in this expression is described by the pair-
delocalized orbitals 

0±
AB = (|a') ± |b '» /V2 (H) 

The transfer energies of the dimer states are given by the expression 

E±
s™ = ±0(SAB + l/2)/2S° (12) 

where S0 = 5/2, and the upper and lower sign correspond to those 
in eq 10. The electronic functions of the pair without excess 
electron (e.g., CD) are defined by straightforward spin coupling 
as 
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|SCD°> " K5C0 .V)SCD°> U3) 
A set of symmetry-adapted, formal basis states for the tetramer 
is defined by spin coupling of the fragment functions: 

IOSAB.SCD 0 )^ = K*JAB,SCD
0)S) = [(2S0 + SAB + 

3/2)/(4S° + 2)]1/2[((SAB° = SAB + 

1/2,J)SAB,SCD°)S;0±
AB) + [(2S°-SA B+ l/2)/(4S° + 

2)]1/2[((SAB° = S A B - 1/2,J)SA B ,SC D°)S;<^A B> (14a) 

in which the excess electron is delocalized over the centers A and 
B, and 

1(S^o1Sc0)S)* = |(SAB
0,$±

Sci>)S) = -[(2S0 + SCD + 

3/2)/(4S° + 2)]I/2|(SAB°,(i,SCD° = SCD + 

1/2)SCD)S;</>±
CD> + [(2S°-SC D+ l/2)/(4S° + 

2)]1/2|(SAB°,(*,SCD° = SCD - 1/2)SCD)S;</>T
CD) (14b) 

in which the excess electron is delocalized over the centers C and 
D. 

The Hamiltonian matrices of the transfer operator have in 
symmetry-adapted representation (eq 14a,b) a block-diagonal 
form, including submatrices of dimensions <4 (see Appendix). 
A representative example of a block matrix for S= 1/2 is given 
in eq 15: 

-0 (1/45)0 0 -(4(V2)/9)0 |(9/2,4)l/2>-
(1/45)0 -0 (4(V2)/9)0 0 1(4,9/2)1/2)-
0 (4(\/2)/9)0 (4/5)0 (2/9)0 |(7/2,4)l/2>+ 
-(4(V2)/9)0 0 (2/9)0 (4/5)0 |(4,7/2)l/2>+ 

(15) 

The diagonalization can be performed analytically by passing 
first to the basis 

(1(9/2,4)1/2)" ±|(4,9/2)l/2)")/V2 

(|(7/2,4)l/2)+ ± |(4,7/2)l/2)+)/V2 (16) 

leading to a decomposition into two 2X2 matrices with eigenvalues 
-(6/5)0 (twice), (4/5)0, and (6/5)0. The additional interpair 
interactions enhance the derealization energy in the ground state 
by -0/5. The ground states are given by 

|*,> = (2(v/2)/3)[|(9/2,4)l/2>- + |(4,9/2)l/2>]-/V2 -

(l/3)[ |(7/2,4)l/2)+- |(4,7/2)l/2)+]/V2 

(17) 
|*2> = (5(V3)/9)[|(9/2,4)l/2)--|(4,9/2)l/2)-]/V2 + 

((V6)/9)[|(7/2,4)l/2>+ +1(4,7/2) l/2>+]/V2 

The vibronic coupling operator on the Qx axis, which reads 

H„x = XnxQx = X(nAB - nCD)QJ2 (18) 

with wAB = «A + «B and «CD = «c + «D, is diagonal in the symmetry-
adapted basis eq 14a,b. The diagonal elements of Hm

x in the 
pair-delocalized states, which must be added to the diagonal 
energies in eq 15, are given by 

<JV> = ±*Gx/2 (19) 

where the + and - signs refer to states in which the excess electron 
is predominantly delocalized over AB and CD, respectively. As 
we are considering the case of strong transfer interaction (0/ 
(X2/2K) » 1), it is convenient to transform the interaction matrices 
of Ht + H„* to the eigenfunction basis of H1. The transformation 
yields, within the orbitally degenerate ground doublet given in 
eq 17, the matrix 
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Figure 4. Sum of vibronic and elastic energies of the states * + and *~ 
as a function of Qx (Qy = Qz = 0). 

-(6/5)0 (X/V6)<2X |*,> 
(VV6)G, -(6/5)0 l*2> (20) 

There are also nonvanishing vibronic couplings between the ground 
states and the excited levels at (4/5)0 and (6/5)0. These 
interactions, however, can be ignored in the limit of strong electron 
transfer considered here. Diagonalization of eq 20 results in the 
eigenstates 

**-( |*,>±|*2»/V2 (21) 

which are independent of the values for \ and Qx. The excess 
electron in these states is not strictly confined to one of the pairs, 
AB or CD: the pair spins are not good quantum numbers anymore. 
The eigenstates in eq 21 optimize the occupation numbers of the 
pairs AB and CD. This can be seen as follows. The pair 
occupation numbers in the general doublet state, 

*(0) = cos0|tf,)+sini9|¥2> (22) 

are given by the expressions 

<*W1»«ABI*W> = 1I1 + V/6)1/2 s in 2e (23a) 

<*(tf)|«CDl*(fl)> = 1/2 - (1/6)1 '2 sin 26 (23b) 

Hence, the maximum values for the occupation numbers of AB 
and CD are attained for the angles B = ir/4 and 8 = -ir/4, 
respectively. Substitution of these values in eq 22 yields indeed 
the eigenfunctions given in eq 21. The vibronic energies obtained 
by the diagonalization of eq 20 (or, alternatively, by substitution 
of the optimal occupation numbers into eq 18) read 

<¥*|JVI**> = ±\(l/6)l'2Qx (24) 

The total energy of the eigenstates ¥* along the Qx axis can be 
expressed as 

<**|fft + H„* + HJ**) = -(6/5)0 ± X(l/6)'/2ex + 

(KfI)Qx
1 (25) 

(see Figure 4). The energy minima are reached at 

G , - G , 0 - - 0 / S ) 1 7 V (26a) 
in the * + state and at 

G, =-G*0 = ( 1 / 6 ^ V (26b) 

in the *- state. The two equivalent minima correspond to 
predominant excess-electron delocalization over AB and CD, 
respectively, but as was stated before, the excess electron in the 
SP* states is also slightly delocalized toward the other pair of the 
cluster (see, e.g., eq 23). The occupation number of the minority 
pair is a function, given in eq 27, of the position coordinate at the 
energy minimum: 

Bominaar et al. 

Table 2. Multiplicity of Minima, Average Occupation Number of 
Minority Pair (/£CD», Vibronic Coupling Coefficient (('/2 - «CD>). 
and Vibronic Stabilization Energy of the 19 Lowest-Energy, 
Broken-Symmetry, S = 1/2 Eigenstates 

eigenstate multiplicity <«CD> ( ' /2-"CD) 1 

(9/2,5) 1/2)"* 
(9/2,4) 1/2)" 
(7/2,4) 1/2)" 
(7/2,3) 1/2)" 
(5/2,3) l/2>-
(5/2,2) 1/2)" 
(3/2,2) 1/2)" 
(3/2,1) 1/2)" 
(1/2,1) 1/2)" 
(1/2,0) 1/2)" 

2» 
2 
2 
2 
2 
2 
2 
2 
2 
1 

0.0833 
0.0918 
0.1667 
0.1838 
0.2500 
0.2764 
0.3333 
0.3709 
0.4167 
0.5000 

5/12 
1/V6 
1/3 
l/Vio 
1/4 
1/V20 
1/6 
1/V60 
1/12 
0 

-25/144' 
-1/6 
-1/9 
-1/10 
-1/16 
-1/20 
-1/36 
-1/60 
-1/144 
0 

-347' 
-333 
-222 
-200 
-125 
-100 
-56 
-33 
-14 
0 

" Principal component of eigenstate in symmetry-adapted representa
tion. * Number of equivalent minima on each Qt axis.c Energies in units 
X2/2K. d Energies in wavenumbers obtained for X1JIK = 2000 cm-1. 

(27) 

(28) 

< « C D > - 1 / 2 - | G , ° / ( V * ) I 

The energy at the minima, in total six, is given by 

£° = - (6 /5 )0 - (l/6)(\72«) 

where the latter term represents the vibronic stabilization energy. 
Interaction matrices of dimension 4X4, similar to that given 

in eq 15, can be constructed in the function sets {|(7/2,3)l/2)-, 
|(3,7/2)l/2)-,|(5/2,3)l/2)+,|(3,5/2)l/2)+},{|(5/2,2)l/2)-,...}, 
.... For each subset, we can derive, as before, eigenstates with 
predominant pair delocalization (see eq 21), corresponding to 
minima located at the Qi axes at the positive and negative side 
of the origin (see eq 26). The transfer interaction in the degenerate 
subset {|(l/2,0)l/2)-, |(0,l/2)l/2>-} results in electronic states 
which are completely delocalized over the cluster, having a single 
minimum located at the origin of Q space. Furthermore, there 
exist nondiagonal transfer interactions within the following binary 
subsets: {|(9/2,5)l/2>-, |(4,9/2)l/2)+}, {|(9/2,4)l/2)+, 

1(5,9/2)1/2)-}, {|(7/2,4)l/2)-, |(3,7/2)l/2)+} The transfer 
interaction stabilizes, in each of these function sets, an eigenstate 
of energy -(6/5)0, in which the excess electron is once more 
mainly occupying one of the pairs. Altogether, the Hamiltonian 
matrix of the transfer operator Ht in the space of symmetry-
adapted basis functions (eq 14a,b) of spin 5 = 1/2 is block-
diagonalized into four 4X4 and twelve 2X2 interaction matrices. 
Diagonalization yields, among others, 19 eigenstates of energy 
-(6/5)0, which are designated in Table 2 by their principal 
components in symmetry-adapted representation (column 1). The 
table contains furthermore the number of equivalent minima on 
each Q1 axis (column 2), the occupation number of the minority 
pair (column 3), the vibronic coupling coefficient (1/2 - «CD> 
(column 4), the vibronic stabilization energies at the minima in 
units of the site trapping energy X1JIK (column 5, and the latter 
energies as obtained by adopting a value for X2/2K (=2000 cm-1) 
typical for iron-sulfur clusters50 (column 6). The table reveals 
the existence of two low-lying, nearly degenerate states with the 
principal components |(9/2,5) l/2)-and |(9/2,4) l/2)-and a series 
of excited states which appear in the order |(7/2,4)l/2)-, 

|(7/2,3)l/2)-,|(5/2,3)l/2)-,|(5/2,2)l/2)- |( 1/2,0) 1/2)-. The 
energy order can be qualitatively understood as follows. The 
intrapa.it delocalization energies within the principal components, 
!(SAB.SAB * 1/2)1/2)-, of the eigenstates increase with subspin 
•SAB (see eq 12). As a consequence, the interpa.it interaction has 
to decrease simultaneously, in order to maintain the total 
delocalization energy -(6/5)0 (see Figure 5). Whence, the excess 
electron is less smeared out for higher values of SAB. leading to 
smaller values of («CD> a nd t 0 higher vibronic stabilization 
energies. The interpretation of the energy order |(SAB.SAB + 
l/2)l/2)-below|(5AB,5AB-l/2)l/2)-isa more intricate matter 
which can be settled by straightforward calculation. 

intrapa.it
interpa.it
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S =1/2 
S A B = 9 / 2 V 9/2 

* l 

(A) (B) 
Figure 5. Schematic representation of the strengths of the electron-
transfer interactions (broken arrows) in !(SAB

 =
 9/2,SCD°

 = 5)5 = 1/2)* 
(A) and in a 5 = 1/2 configuration with lower pair-spin numbers: 5AB 
< 9/2 and SCD° < 5 (B). Notice that the tiltings of the core spins in B 
lead to a weaker in/radimer interaction but to a stronger interdimer 
interaction. Consequently, the excess-electron charge in B is more 
uniformly distributed than that in A. 

(A) (B) 

Figure 6. (A) Ligand shell distortions accompanying the pair delocal-
ization phenomenon obtained for 0/(\2/2K) > 1. (B) Ligand shell 
distortions associated with a point off the Qx axis, showing the symmetry 
breaking of the delocalized pair. 

The study of the model system d'-d'-d'-d2, given in ref 51, 
shows that the excess electron in the ground state of spin S= 1/2 
therein is strictly confined to a pair of sites for large, positive 
values of 0, whereas in the system d5-d5-d5-d6, also interpa'n 
derealizations arise, which have, as is documented in Table 2, 
a significant impact on the spin-state energies. The additional 
transfer interactions in the latter system are a consequence of the 
antiparallel alignment of the excess-electron spin relative to the 
spin of the d5 core of the atom containing the electron. 

The electronic structures, outlined above, of the states "pre
pared" by the double-exchange interaction underlie, evidently, 
the stability of the two-fold symmetric ligand shell distortions 
(Figure 6A) located at Q1 axes. Deviations from the Qt axes, as 
illustrated in Figure 6B, break the symmetry of the ligand shell 
pair, AB, containing the excess electron, in all directions (Qx

0, 
dQy, dQz) with dQy + dQz ^ 0 (see eq 7). These distortions give 
rise to vibronic interactions between the pair-delocalized ground 
state and the excited levels obtained in two-fold symmetry. Like 
in dimeric mixed-valence units,4546 these vibronic interactions 
have the potential to localize the excess electron at one of the sites 
A or B. However, for sufficiently large values of the ratio 
/3 / (X 2 /2K), i.e., > 1 in d5-d5-d5-d6, this localizing interaction is too 
weak to break the two-fold symmetry. Numerical analysis shows 
furthermore that the system is also stable to distortions in the 
direction with dQy + dQ. = 0, so we are dealing with a minimum 
and not with a saddle point. 

HDVV Exchange. In this section, we analyze the effect of the 
interion exchange interactions on the electronic states and their 
energies as obtained at the adiabatic potential minima. The 
couplings are described by the HDVV Hamiltonian, eq 4, and 
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Figure 7. Exchange couplings figuring in the expression for the 
approximate exchange energy of the pair-delocalized configuration 
|(5AB^CD0)5>*, given in eq 30. 

depend on the exchange parameters for ferrous-ferric (J) and 
ferric-ferric interaction (Ji). The parameters in iron-sulfur 
clusters are negative and lead in dimeric clusters to an anti-
ferromagnetic alignment of the iron spins. The exchange coupling 
constants in the ferric pairs of these systems are considerably 
larger in magnitude than those in the mixed-valence pairs. The 
most reliable estimates of their values are obtained from magnetic 
measurements on dimeric clusters, w hich exhibit localized mixed-
valence states, resulting in values of J < -160 cm-1 and J\ < -360 

cm -1 16 

Homogeneous HDVV exchange (J = J1), which is represented 
by the operator 

"ho. = -vms2 
(29a) 

shifts the energies of all states with the same spin number S by 
an equal amount of energy, -JS(S + l ) /2 , and stabilizes, for 
negative J values, the spin states in the order £(1/2) < £(3/2) 
< ... < £(19/2). Inhomogeneous HDVV exchange, arising for 
AJ = J - J] ^ 0 , represented by the operator 

"inhon, = (V/2)SkJ (29b) 

(see eq 5), splits, however, also the level energies inside the 
manifolds of equal total spin. As before, we shall consider the 
cases of weak ( |/3|/(X2/2K) « 1) and of strong positive transfer 
interaction (0/(\2/2K) > 1) separately. 

The electronic eigenstates of //HDVV = //hom + Hinhom, >n absence 
of intercenter resonance (/3 = 0), are given in eq 1 and describe 
an excess electron which is strictly localized at one of the sites 
A, B, C, or D of the tetramer. The exchange interaction removes 
the degeneracy of the spin-state energies and results in the energy 
level scheme, with four-fold orbitally degenerate levels, given in 
eq 5. The largest exchange stabilization energies, in the parameter 
range relevant to iron-sulfur clusters, i.e., J < 0 and J - J\ > 0, 
are attained in the state |(5A = 2 ,5 B C D° = 3/2)5 = 1 / 2 ) for 27 
< J1 and in [(5A = 2 ,5 B C D° = 1/2)5 = 3/2) for 27 > Jx. The 

localized ground state calculated from the aforementioned 
exchange parameters has spin 5 = 3/2 and lies 60 cm-1 below 
the energy of the 5 = 1/2 state. We notice, however, that neither 
of the localized states is compatible with the spectroscopic data 
of the oxidized HiPIP (see Introduction). 

We shall now consider the effect of the HDVV exchange on 
states and energies of systems with strong transfer interaction. 
It was shown in the previous section that the electronic eigenstates 
at the minima of the adiabatic surfaces are simple linear 
combinations of configurations of the form | (S A B,SCD°)5)* and 
| (5AB°.5CD)5)± . Obviously, the exchange energy of an eigenstate 
receives its main contribution from the principal component. The 
exchange energies of the configurations can be cast in a simple 
form, eq 30, by approximating the interpair coupling parameters, 
7Ac. A D , ./BO and /BD , by the average JiV = (J + J\)/2 (see 
Figure 7): 
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Figure 8. Relative exchange energies of the configurations |(5AB = 

9/2,5CD°)5 = 9/2 - SCD0)* as a function of the dispersion of J and J\ 
in the range J\ < J < 0, relevant to iron-sulfur clusters. 

Table 3. Relative Exchange Energies, Vibronic Energies, and Total 
Energies of the Six Lowest-Energy, Broken-Symmetry, 5 = 1 / 2 
States, Calculated in Different Approximations 

eigenstates 

(9/2,4)" 
(7/2,3) 
(5/2,2) 
(5/2,3) 
(7/2,4) 
(9/2,5) 

0* 
50 
100 
400 
450 
500 

A£HDW 

(K 
59 
124 
330 
389 
444 

0* 
50 
73 
246 
313 
393 

At 

(K 
133 
233 
208 
111 
-14 

vc 

o/ 
149 
300 
259 
123 
-13 

A£t0 

0(1)* 
183(2) 
333(3) 
608 (6) 
561 (5) 
486(4) 

0* 
199 
373 
505 
436 
380 

" Principal component, |(5AB,5CD°)1/2>~, of eigenstate in symmetry-
adapted representation. b Energy of principal component obtained from 
eq 30 using AJ = 200 cm-1. c Energy of principal component obtained 
from eq 29b using AJ = 200 cm1. d Obtained by full calculation. 
' Evaluated from last column of Table 2. •''Obtained by full calculation 
for AJ = 0. * Column 2 + column 5. Energy order in parentheses. 
* Obtained by full calculation or by addition: column 4 + column 6. 

E(SAB,SCD°,S) = E° + [(</, - ^ ) /4 ]5 A B (5 A B + 1) + 

[ ( / - y , ) / 4 ] S C D
0 ( S C D

0 + \)-[(J + J,)/4]S(S + 1) (30) 

As we shall show later on, the basic trends in the effect of HDVV 
exchange on state energies are already reproduced by eq 30. Let 
us examine the case J\ < J < 0 relevant to iron-sulfur clusters. 
The coefficients of the three terms in eq 30 are then negative, 
positive, and positive, respectively. The sum of the first two terms 
is negative for SAB > SQD°

 an(* positive otherwise. Consequently, 
the configuration |(5'AB,SCD0)'S') has for SAB > SCD0 l ° w e r energy 
than for SAB < SQD° ( s e e a ' s o r e^ ^ ) - ^ n e ' a r S e s t exchange 
stabilization energy for a given spin number S is reached for SAB 

= 9/2 and S C D° = |SAB - 5J- Hence, the ground configuration 
belongs to the series |(9/2,4)l/2)-, |(9/2,3)3/2>-, .... The 
configuration which is actually lowest depends on the values of 
J and J\. Figure 8 shows that the low-spin configuration 
1(9/2,4)1/2)" lies lowest in energy in the case of a moderate 
dispersion of the values for J and J] ((Jx - J)/{J\ + J) < 3/8). 
For larger dispersions, configurations of higher spin (S = 3/2 
and 5/2) are favored by inhomogeneous exchange. The afore
mentioned exchange parameters correspond to a location near 
the crossing of the S = 1 /2 and S = 3/2 levels. The exchange-
coupling constants in the tri- and tetrameric clusters may, of 
course, differ from those in the dimeric units. If we assume that 
their values fulfil the inequality (J\ - J)/(J\ + J) < 3/8, i.e., the 
coupling constants in tetramers are less dispersed than those in 
dimers, then the antiferromagnetic exchange will stabilize an 
electronic broken-symmetry state of low spin with principal 
component |(9/2,4) 1/2>~. 

It is also of interest to consider the effect of inhomogeneous 
exchange on the energies of the other S = 1/2 levels. Table 3 
(column 2) presents the relative exchange energies of the principal 
configurations (column 1) of the six energetically lowest electronic 
states of spin S = 1/2 as obtained from eq 30, by adopting the 

V 4 (3) 

S = 1/2 
Figure 9. Schematic representation of the spin structure of the principal 
component of the broken-symmetry, 5 = 1 / 2 ground state obtained for 
/3/(X2/2/c) > 1. The spins 5AB and 5CD° figuring in the component are 
indicated. The values in parentheses refer to the first excited state. 

value J-Jx = 200 cm-1. As stated before, the largest ex
change stabilization energy is obtained in the configuration 
1(9/2,4)1/2)-. The principal component, |(9/2,5)l/2)-, of the 
ground state calculated without HDVV exchange lies 500 cm"1 

above the lowest exchange level. In order to evaluate the relative 
values of the total energies, the relative exchange energies (column 
2) and vibronic energies (column 5) must be added (column 7). 
Since the vibronic energy of the broken-symmetry state of 
|(9/2,5)I/2>--typc is only 14 cm"1 below that of |(9/2,4)l/2)--
type, the inhomogeneous H DVV exchange can stabilize the latter 
as the ground state. Furthermore, it will be seen from Table 3 
that the first excited state is of | (7/2,3)l/2)" character. Thus, 
the set of spin structures deduced from the total Hamiltonian in 
the two energetically lowest broken-symmetry eigenstates (see 
Figure 9) encloses the ground-state structures inferred from 
spectroscopicstudiesonoxidizedHiPIPanditssyntheticanalogues 
(see Introduction). 

So far, the effect of the HDVV interaction on state energies 
was simply accounted for by adding the approximate exchange 
energies, given by eq 30, to the energy eigenvalues of the 
Hamiltonian Hx + H^ + Hc\. This procedure rests on the following 
premises: (i) the eigenstates of H1 + Hev + He\ are not altered 
by inhomogeneous HDVV exchange, (ii) the exchange energies 
of the minority components of the eigenstates are negligible, (iii) 
nondiagonal HDVV interactions between different eigenstates 
have a vanishing effect on state energy, and (iv) the exchange 
couplings between the mixed-valence pair and the pure-valence 
pair can be described by a single parameter, 7av. In order to 
verify the validity of these premises, we calculated the eigenvalues 
and eigenstates of the operator H1 + Hcv + He\ + //jnhom» ie., of 
the former three interactions in the presence of the genuine 
inhomogeneous HDVV operator, eq 29b, by means of the 
procedure outlined in the Description of the Model section (i.e., 
full calculation). The eigenvectors thus obtained are linear 
combinations of the localized basis states given in eq 1. It is more 
convenient, however, to analyze the exchange effect on state 
composition in symmetry-adapted representation. Thedelocalized 
basis states can be expressed in the localized basis by single vector-
recoupling operations in the right-hand size of eq 14, leading, in 
eq 14a, to the relation 

£ < ( 5 A , ( 5 B
0 , 5 C D

0 ) 5 3 0 ) 5 | ( ( 5 A , 5 B
0 ) 5 A B ^ C D ° ) 5 > X 

( l /v / 2)[ | (5 A , (5 B
0 ,5 C D

0 )5 3
0 )5>± 

( - 1 ) S * B + ' ' ' ! ( S B X S A ^ C D W ) - * ) ] (31) 

A similar expression can be derived for the functions given in eq 
14b. The summation in eq 31 is over S3

0 (= 5ACB° = SWD 0 ) a"d 
is constrained by the triangular condition |SA - S3

0I < S < |SA 
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Table 4. Expansion of Symmetry-Adapted Basis States of Spin S = 
1/2 in Localized Basis 

symmetry-adapted 
basis state expansion in localized basis 

(l/2,0)l/2>±a 

(1/2.1)1/2)* 
(3/2,1)1/2)* 
(3/2,2)1/2)* 
(5/2,2)1/2)* 
(5/2,3)1/2)* 
(7/2,3)1/2)* 
(7/2,4)1/2)* 
(9/2,4)1/2)* 
(9/2,5)1/2)* 

|0,5/2,l/2>*» 
-(8/15)'/2|l,3/2,l/2):F + (7/15)'/2|l,5/2,l/2), 
(7/15)1/2|l,3/2,l/2>± + (8/15)'/2|l,5/2,l/2>± 
-(3/5)|2,3/2,l/2>± + (4/5)|2,5/2,l/2>± 
(4/5)|2,3/2,l/2), + (3/5)|2,5/2,l/2), 
-(8/35)'/2|3,3/2,l/2>, + (27/35)'/2|3,5/2,l/2>, 
(27/35)'/2|3,3/2,l/2)± + (8/35)1/2|3,5/2,l/2>± 
-(l/3)|4,3/2,l/2>* + (8/9)'/J|4,5/2,l/2>± 
(8/9)'/2|4,3/2,l/2)T + (l/3)|4,5/2,l/2>, 
15,5/2,1/2), 

" |(SABJCD°)S)*. * \SCD°,S}0,S)±, see text. 

Table 5. Compositions of the Six Lowest-Energy Eigenstates of 
Spin 5 =* 1/2 in Symmetry-Adapted Representation Obtained with 
and without HDVV Exchange 

composition of eigenstates" 

92(9/2,4)"' 
82(7/2,3)" 
69(5/2,2)-
92(9/2,5)" 
84(7/2,4)" 
75(5/2,3)" 

92(9/2,4)" 
84(7/2,3)-
75(5/2,2)" 
93(9/2,5)" 
85(7/2,4)" 
78(5/2,3)-

AJ-
8(4,7/2)+ 
16(3,5/2)+ 
25(2,3/2)+ 
8(4,9/2)+ 
15(3,7/2)+ 
22(2,5/2)+ 

8(4,7/2)+ 
16(3,5/2)+ 
25(2,3/2)+ 
7(4,9/2)+ 
15(3,7/2)+ 
22(2,5/2)+ 

•• 200 cm"1 

0(4,9/2)" 
1(3,7/2)" 
2(2,5/2)" 

AJ = O 
0(4,9/2)" 
0(3,7/2)" 
0(2,5/2)" 

0(7/2,4)+ 
1(5/2,3)+ 
4(3/2,2)+ 

0(7/2,4)+ 
0(5/2,3)+ 
0(3/2,2)+ 

100 
100 
100 
100 
99 
97 

100 
100 
100 
100 
100 
100 

' Calculated for A2/2/c = 2000 cnr1, 0 = 104 cm"1, J = O, and AJ 
indicated at the minimum QS/(\/K) = 0.4276, Qf = Qf = 0 of the 
lowest state, which is of (9/2,5)--type, obtained for AJ = 0. * Weight (%) 
of symmetry-adapted basis state 1(S1AB1ScD0) 1/2 >*. 

+ S3
0I; thus for SA = 2 and S = 1/2, one obtains S3

0 = 1/2 and 
3/2. The resulting expressions for the delocalized basis states of 
spin 5 = 1 / 2 , with the excess electron occupying AB, are explicitly 
given in Table 4. The + / - combinations of the two localized 
functions occurring in the right-hand side of eq 31 are indicated 
in Table 4 by the notation ISCD 0 . - ^ 0 ^ )* - The exchange energies 
of these latter functions are given by eq 5. The inhomogeneous 
exchange energies (eq 29b) of the symmetry-adapted basis states 
are calculated by weighted addition of the energies (15/8)A/ 
and (35/8) A/ of the S3

0 = 3/2 and S3
0 = 5/2 terms, respectively. 

We note that these energies are independent of the label ±. The 
relative values of the exchange energies thus obtained for the 
principal components indicated in Table 3 are given in column 
3. Comparison of the latter values with those given in column 
2 of the same table indicates that the averaging procedure resulting 
in 7av has a moderate but nonnegligible effect on the calculated 
exchange splittings (see point iv, above). The compositions, in 
symmetry-adapted representation, of the electronic eigenstates 
of spin S= 1/2 calculated by the full treatment, using a 
representative set of model parameters, are indicated in Table 5 
(columns 1-4). The upper part of the table refers to the values 
J = 0 and Ji = -200 cm-1 (A/ = 200 cm"1) and the lower part 
to J - J\ = 0. Comparison reveals that the eigenstates are hardly 
affected by exchange interaction (see point i, above). As a 
consequence, the positions of the adiabatic potential minima in 
Q space remain virtually unchanged too. Subtraction of the total 
energies (not given) calculated for the corresponding states in the 
upper and lower part of the table (i.e., those having the same 
principal component indicated in column 1) yields the exchange 
energy of the state concerned. The relative values of the exchange 
energies thus obtained are given in Table 3 (column 4) and show 
overall somewhat smaller values than the exchange splittings 

between the principal components (column 3), indicating that 
the premises ii or iii given above are not quite fulfilled. The 
relative vibronic energies of the broken-symmetry states given in 
Table 5 for AJ = 0, resulting from full calculation, are presented 
in Table 3 (column 6). Comparison of the latter set of numbers 
and the vibronic energies obtained in the limit /3/(X2 /2K) -» =° 
(column 5) reveals the persistence of some pseudo-Jahn-Teller 
interaction for the parameter values adopted in Table 5. The last 
column of Table 3 contains the relative values of the total energies 
of the broken-symmetry states given for A/ = 200 cnr1 in Table 
5 as obtained by full calculation. These values can also be 
evaluated by adding the exchange and vibronic energies given in 
columns 4 and 6. The approximated splitting energies between 
the three lowest levels of spin S = 1 /2 (column 7) are in good 
agreement with the results of the full calculation (last column). 
The deviations in the energies of the upper three states are larger 
but do not alter the energy order. 

Conclusion 

We analyzed the magnetic and electronic properties of the 
oxidized HiPIP in the framework of the phenomenological 
approach, which was successfully applied previously to the 
interpretation of the properties of reduced ferrodoxin II. The 
main results of the present work can be summarized as follows. 

(i) The electronic ground state of the transfer operator of the 
regular tetrahedral mixed-valence system Fe(H)Fe(III)3 is, for 
/3 < 0, an orbitally nondegenerate state of maximum spin. The 
electronic ground state obtained for /3 > 0 is highly degenerate, 
including states of different spin and orbital degeneracy. 

(ii) The vibronic interactions of the excess electron with local, 
symmetric ligand shell distortions give rise to various localization 
patterns depending on the value of the ratio fi/ (X2/ 2K) . For small 
ratios, |(3/(X2 /2K)| « 1, the excess electron is trapped at one site 
ofthecluster. For/?/(X2/2/c)> 1, the probability densities of the 
excess electron in states of lower spin number are mainly 
concentrated at two equivalent sites of the cluster (pair der
ealization). For large, negative values of the ratio, the excess 
electron charge is uniformly distributed over the cluster. 

The conclusions formulated under (i) and (ii) above parallel 
those deduced for the trimeric mixed-valence unit d5-d5-d6 in 
ferredoxin II. 

(iii) The excess-electron charges in the pair-delocalized states 
obtained for (8/(X2/2/c)> 1 are not strictly confined to the majority 
pair. Their occupation numbers depend on spin and lead to 
vibronic energies which appear in the order (S=) 1/2 < 3/2 < 
.... Moreover, vibronic interaction removes the degeneracies of 
the electronic state energies within the ground manifolds of given 
spin. The two lowest states of spin S = 1/2, thus obtained, have 
principal components |(9/2,5) 1 / 2 ) - (ground) and |(9/2,4) 1 /2)- . 

(iv) Inhomogeneous HDVV exchange has little effect on state 
composition and on adiabatic minimum position in Q space. On 
the contrary, its effect on state energy is considerable. The two 
lowest broken-symmetry states evaluated by adopting a set of 
exchange-coupling constants representative for iron-sulfur clus
ters have |(9/2,4)l/2)- (ground) and |(7/2,3)l/2>- character. 
Ground states of similar character have been inferred from the 
spectroscopic studies of the HiPIP and synthetic analogues thereof. 

The parameter range, /?/(X 2 /2K) ^ 1, following from the 
interpretation of the pair-delocalized, S = 2 ground state in 
reduced ferredoxin H,50 coincides with that deduced here for 
HiPIP. As expected, the basic interactions have, apparently, not 
drastically changed, i.e., not to the extent that the sign of fi is 
reversed, in passing from trimeric to tetrameric clusters. 

The analyses of ferredoxin II in ref 50 and of HiPIP presented 
here differ in one point. In the former, a ground state of correct 
spin structure is already obtained from double-exchange and 
vibronic coupling alone, whereas the latter has to invoke 
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inhomogeneous HDVV exchange in order to distinguish the state 
of |(9/2,4)l/2)-character from that of |(9/2,5)l/2>-character. 

The results presented in this article provide new evidence for 
the correctness of our basic assumptions about the spin-state and 
electron distribution regulating mechanisms which underlie the 
electronic structures in iron-sulfur clusters. 

Appendix 

The transfer matrices are readily evaluated in symmetry-
adapted representation (eq 14a,b) by utilizing the following two 
selection rules. 

The first rule reads 

ASAB
0 = ASCD° = 0 (A. Ia) 

and follows from the commutation relations [Zft̂ AB0] = [ # I A : D 0 ] 
= 0. 

The second rule states that interdimer interactions 
<0-AB|tft|0±CD> and <0_CD|i/t|tf>±AB> are zero. This rule is a 
consequence of the eqs A.lb.c and the orthogonality relation 
<0+

AB|0.CD> = <*-ABl*+CD> = 0: 

Ht4>™ = - M AB (A.lb) 

CD _ CD H^y" = -fity (A. ic) 
Another useful set of relations in the calculation of the matrix 
elements is given by 

AB tft0+
AB = 0 0 +

A B + 20<j>+ 
CD (A.2a) 

Ht<t>+
CD = /3</>+

CD + 2/3</>+
AB (A.2b) 

The construction of the Hamiltonian matrices, using the 
selection rules, will be illustrated from an example. Let us 
calculate the interaction matrix involving the basis state 

|(SAB = 9/2,SCD° = 4)5 = 1/2)" = ( 1 1 / 1 2 J 1 Z 2 K ( S A 8
0 = 

5,* = 1/2)SAB = 9/2,SCD° = 4)5 = 1/2;</>_AB> + 

( 1 / 1 2 ^ 2 K ( S A 8
0 = 4,5 = 1/2)SAB = 9/2,SCD° = 4)S = 

1/2;</>+
AB> (A.3) 

The action of the transfer operator on the first configuration, 

containing <£_AB, yields no interdimer transfer (second rule). Its 
action on the second term gives rise to interdimer transfer involving 
the configurations (first rule) 

K(SAB0 = 4,(5 = 1/2,SCD° = 4)SC D = 9/2)S = l/2;0+
CD> 

(A.4a) 

K ( S A 8
0 = 4,(5 = 1/2,SCD° = 4)SC D = 7 /2)5 = l/2;*+

CD> 

(A.4b) 
in which the excess electron occupies the orbital </>+CD. They 
interact, in their turn, with the configuration 

|((SAB
0 = 4,5 = 1/2)SAB = 7/2,5CD° = 4)5 = l/2;0+

AB> 
(A.4c) 

with the electron being once again at the pair AB. In summary, 
there result transfer interactions between the symmetry-adapted 
basis states 

1(9/2,4)1/2)' = |(SAB = 9/2,SCD° = A)S = 1/2)" (A.5a) 

| (4,9/2)l/2>- = |(SAB0 = 4,5C D = 9/2)S = 1/2)" (A.5b) 

| (7/2,4)l /2>+ = |(SAB = 7/2,SCD° = 4)5 = l / 2 ) + (A.5c) 

1(4,7/2) l / 2 ) + = |(SAB° = 4,SC D = 7/2)S = l / 2 ) + (A.5d) 

in which the latter three states contain the configurations of eqs 
A.4a, A.4c, and A.4b, respectively. 

The evaluation of the matrix elements involves spin projection 
factors of the form 

( ( ( S A B
0 , 5 ) S A B , S C D

0 ) S | ( ( S A B
0 , ( 5 , S C D ° ) S C D ) S > = (2SAB + 

1) 1 / 2 (25C D+ l)1/2Tf(SAB
0,5,S,SCD°;5AB,SCD) (A.6) 

where Wis a Racah coefficient, which can be readily calculated 
from the standard expression.54 Furthermore, by taking into 
account the factor 2/3 in eq 16, the coefficients weighting the 
configurations in eqs 14a,b, and the overall multiplication factor 
of 6/5 imposed by the coupled core-spin representation, we arrive 
at the interaction matrix given by eq 15 of the text. 

(54) Brink, D. M.; Satchler, G. R. Angular Momentum; Oxford Library 
of Physical Sciences; Clarendon: Oxford, U.K., 1968. 


